human_iPSC-derived_astrocytes_immunocytochemistry_vimentin

cat no | ioEA1093 Early Access

ioAstrocytes

Human iPSC-derived astrocytes

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

For academic discounts or bulk pricing inquiries, contact us

Human iPSC-derived astrocytes

ioAstrocytes are functional human iPSC-derived astrocytes, deterministically programmed using opti-ox technology that convert consistently into defined astrocytes within days. Cells demonstrate expected stellate morphology, express key astrocytic markers (SOX9, EAAT1, S100B and Vimentin), are capable of phagocytosis, cytokine secretion, and modulation of neuronal activity in co-culture.

Early access product now available, contact us for more information.

ioAstrocytes are designed for ease of use, delivered cryopreserved and supported by open-source media and protocols to be cultured with other CNS cell types such as ioGlutamatergic Neurons. 

The cells recapitulate key human astrocytic functions, including mediating an inflammatory response, disposal of unwanted materials and modulation of neuronal activity in co-cultures. Multiple lots of cells were investigated by bulk-RNA sequencing, each displaying highly equivalent transcriptomic profiles, with less then 0.5% differentially expressed genes, enabling scientists to generate reproducible data, consistently. 

ioAstrocytes bridge translational gaps and overcome limitations associated with the generation of accurate in vitro models of the human brain, to support neurodegenerative disease research and therapeutic development.

Benchtop benefits

astrocytes_co-culture_ready

Co-culture ready

ioAstrocytes support functional neuronal networks within co-culture settings, enabling in-vitro modelling of complex CNS biology.

astrocytes_functional_phagocytosis_cytokine_secretion

Functional

Display key phagocytic and cytokine secretion functions as well as a demonstrable influence on neuronal network activity.

astrocytes_consistency_data_reproducibility

Consistent

Get reproducible results from every vial with lot-to-lot consistency of highly characterised & defined human iPSC-derived cells.

Schematic overview of the timeline in the user manual


bit.bio_ioAstrocytes_timeline_horizontal-v2

ioAstrocytes are delivered in a cryopreserved format and are programmed to rapidly mature upon revival in the recommended media. The protocol for the generation of these cells is a three-phase process: 1. Stabilisation for 2 days. 2. Pre-maintenance for an additional 6 days. 3. From day 8 onwards, maintenance of cells according to the protocol and recommended media for the duration of assay requirements.

Product specifications

Starting material

Human iPSC line

Seeding compatibility

6, 12, 24, 96 and 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: ≥1 x 10⁶ viable cells

Quality control

Sterility, protein expression (ICC) and gene expression (RT-qPCR)

Differentiation method

opti-ox deterministic cell programming

Recommended seeding density

30,000 cells/cm²

User storage

LN2 or -150°C

Format

Cryopreserved cells

Product use

ioCells are for research use only

Applications

Neurodegenerative disease modelling
Drug screening & development
Neuropharmacology
Neuroinflammation research
Biomarker discovery

Technical data

Co-culture protocol

Easy-to-use co-culture protocol for ioAstrocytes with ioGlutamatergic Neurons 
ioASTRO-webpage_diagrams-v12

This protocol describes a method of co-culturing ioAstrocytes with ioGlutamatergic Neurons and associated disease models to facilitate research into complex neuroglial interactions.

Rapid gain of functional activity

Phagocytosis of S. aureus by ioAstrocytes

NanoLive video showing the ability of the ioAstrocytes to phagocytose pHrodo® Red S. aureus Bioparticles® for Incucyte®.

pHrodo® Red S. aureus Bioparticles® were added to cultures of ioAstrocytes at 15 days post-thaw. At the start of the video, the particles are located outside the cells and due to the neutral pH of the media are non-fluorescent, but when phagocytised they are exposed to the acidic environments of intracellular organelles and fluoresce bright red. The video shows an increase of red fluorescent particles accumulating within the cell over a time course of 24 hours, demonstrating that ioAstrocytes have the capability to phagocytose.

ioAstrocytes secrete cytokines in response to stimulation
Cytokine secretion

MSD multiplex immunoassay measuring whether ioAstrocytes are able to secrete a range of cytokines upon treatment with various proinflammatory stimuli. ioAstrocytes were treated with 3 different proinflammatory cocktails (T) or vehicle (V) at day 15 post-thaw and after 24 hours media samples were collected to measure the concentration of cytokines in the media.

The proinflammatory cocktails induce the secretion of most of the cytokines relative to the vehicle treated cells. Overall, the ioAstrocytes display the expected responses to the three distinct cocktails, including a strong response of Interleukin 6 (IL-6), known to be involved in neuroinflammation. Note that IFNg or IL-1b are present in two of the inflammatory cocktails and, therefore, the presence of these cytokines in the media will lead to high signals upon their detection and interfere with the measurements of their secreted forms.

Highly characterised and defined

Immunocytochemistry shows protein expression of key astrocyte markers

ICC Image panel 1
ICC Image panel 2

Click on the tabs to explore the data.

ioAstrocytes express at Day 15 and Day 22 the key astrocyte markers S100B, SOX9 (A) and Vimentin (B). DAPI was used as a nuclear stain

S100B is a multifaceted protein primarily found in astrocytes playing a key role in activation, neuroprotection, calcium homeostasis and astrocyte-neuron communication. SOX9 is critical for the differentiation of astrocytes. Vimentin is a cytoskeletal protein enriched in astrocytes.

RT-qPCR shows gene expression of key astrocyte markers
RT-qPCR DATA NEW

RT-qPCR data showing expression of key astrocyte markers EAAT1, SOX9, S100B and Vimentin (VIM) at four different timepoints (iPSC & D8, D15, D22). ioAstrocytes show expression of key markers from as early as day 8. Pluripotency markers POU5F1 (OCT4) & NANOG) are downregulated.

The SLC1A3 gene codes for the EAAT1 protein (Excitatory Amino Acid Transporter 1). Playing crucial roles in the regulation of glutamate neurotransmission, maintaining neuronal health and protecting against excitotoxicity.

Lot-to-lot consistency for experimental reproducibility

Bulk RNA-sequencing demonstrates high lot-to-lot consistency of ioAstrocytes

BULK RNA SEQ DATA

Bulk RNA-sequencing analysis was performed on three different lots of manufactured product at day 1 and day 22 post revival. Principal component analysis (PCA) represents the variance in gene expression between the three different lots of ioAstrocytes. This analysis shows lots clustering very closely (<0.5% differentially expressed genes) demonstrating high consistency at each given timepoint.

This lot-to-lot consistency of ioAstrocytes will help reduce experimental variation and increase the reproducibility of data. Colours represent the parental non-induced hiPSC cell line and the three lots of ioAstrocytes; shapes represent different timepoints.

Expression levels for specific genes of interest can be requested by contacting our team at technical@bit.bio.

Industry leading seeding density

Do more with every vial

UPDATED ioMotor seeding graphic

The seeding density of our human iPSC-derived astrocytes has been optimised and validated to a recommended seeding density of 30,000 cells/cm2. This means scientists can do more with every vial and expand experimental design within budget without losing out on quality. Resulting in more experimental conditions, more repeats, and more confidence in the data. One Small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plate.

Technical data

In-vitro CNS co-culture model

Easy-to-use co-culture protocol for ioAstrocytes with ioGlutamatergic Neurons 
human_ipsc-derived_astrocyte_co-culture_with_human_ipsc-derived_glutamatergic_neurons

This protocol describes a method of co-culturing ioAstrocytes with ioGlutamatergic Neurons and associated disease models to facilitate research into complex neuroglial interactions.

Phagocytosis of S. aureus

Phagocytosis of S. aureus by ioAstrocytes

NanoLive video showing the ability of the ioAstrocytes to phagocytose pHrodo® Red S. aureus Bioparticles® for Incucyte®.

pHrodo® Red S. aureus Bioparticles® were added to cultures of ioAstrocytes at 15 days post-thaw. At the start of the video, the particles are located outside the cells and due to the neutral pH of the media are non-fluorescent, but when phagocytised they are exposed to the acidic environments of intracellular organelles and fluoresce bright red. The video shows an increase of red fluorescent particles accumulating within the cell over a time course of 24 hours, demonstrating that ioAstrocytes have the capability to phagocytose.

Cytokine secretion in response to stimulation

ioAstrocytes secrete cytokines in response to stimulation
human_ipsc-derived_astrocytes_respond_to_proinflammatory_stimulation_cytokine_secretion

MSD multiplex immunoassay measuring whether ioAstrocytes are able to secrete a range of cytokines upon treatment with various proinflammatory stimuli. ioAstrocytes were treated with 3 different proinflammatory cocktails (T) or vehicle (V) at day 15 post-thaw and after 24 hours media samples were collected to measure the concentration of cytokines in the media.

The proinflammatory cocktails induce the secretion of most of the cytokines relative to the vehicle treated cells. Overall, the ioAstrocytes display the expected responses to the three distinct cocktails, including a strong response of Interleukin 6 (IL-6), known to be involved in neuroinflammation. Note that IFNg or IL-1b are present in two of the inflammatory cocktails and, therefore, the presence of these cytokines in the media will lead to high signals upon their detection and interfere with the measurements of their secreted forms.

Product resources

(LinkedValues: [{hs_name=Producing 3D Neuronal Microtissues for Preclinical Drug Screening using ioGlutamatergic Neurons, hs_id=180505546901, hs_path=glutamatergic-neuron-3d-neuronal-microtissues-inventia, button_label=null, button_link=null, type={label=Application note, value=Application note}, thumbnail={alt_text=bitbio-ioGlutamatergic-Neurons, width=1700, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/ioGlutamatergic%20Neurons/bitbio-ioGlutamatergic-Neurons.jpg, height=1300}, year={label=2024, value=2024}, summary=V1<br>2024<br>bit.bio<br>Inventia, date_published=1728345600000, sort_date=1728345600000, tags=[{label=ioGlutamatergic Neurons, value=ioGlutamatergic Neurons}, {label=ioAstrocytes, value=ioastrocytes}], media_contact=V1<br>2024<br>bit.bio<br>Inventia, listing_button_label=Download}, {hs_name=ioGlutamatergic Neurons , hs_id=161746296923, hs_path=glutamatergic-neurons, button_label=View brochure, button_link=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Resources/Brochures/bit.bio-ioGlutamatergic%20Neurons-Brochure.pdf, type={label=Brochure, value=Brochure}, thumbnail={alt_text=, width=2550, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Discover%20ioCells/iowild-type/bit.bio-ioGlutamatergic-Neurons-Day-14-Beta-III-Tubulin-staining-banner.jpg, height=1791}, year={label=2024, value=2024}, summary=<p>bit.bio</p>, date_published=1713312000000, sort_date=1713312000000, tags=[{label=ioGlutamatergic Neurons, value=ioGlutamatergic Neurons}, {label=ioAstrocytes, value=ioAstrocytes}, {label=Product information, value=Product information}], media_contact=null, listing_button_label=Download}, {hs_name=Reprogramming the stem cell for a new generation of cures, hs_id=161968263465, hs_path=reprogramming-the-stem-cell-for-a-new-generation-of-cures, button_label=Read more, button_link=https://www.ddw-online.com/reprogramming-the-stem-cell-for-a-new-generation-of-cures-1459-202004/, type={label=Publication, value=Publication}, thumbnail={alt_text=, width=2092, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/bit.bio%20ioGlutamatergic%20Neurons%202022.jpg, height=1584}, year={label=2020, value=2020}, summary=<p>Davenport A, Frolov T &amp; Kotter M</p> <p><em>Drug Discovery World</em></p> <p>2020</p> <p>&nbsp;</p> <p>&nbsp;</p>, date_published=1585872000000, sort_date=1597968000000, tags=[{label=ioGlutamatergic Neurons, value=ioGlutamatergic Neurons}, {label=ioSkeletal Myocytes, value=ioSkeletal Myocytes}, {label=ioGABAergic Neurons, value=ioGABAergic Neurons}, {label=ioMicroglia, value=ioMicroglia}, {label=ioSensory Neurons, value=ioSensory Neurons}, {label=ioMotor Neurons, value=ioMotor Neurons}, {label=ioAstrocytes, value=ioAstrocytes}], media_contact=<p><span>Davenport A, Frolov T &amp; Kotter M.</span></p> <p><em>Drug Discovery World</em></p> <p>2020</p> <p>&nbsp;</p> <p>&nbsp;</p>, listing_button_label=Read more}, {hs_name=3D bioprinting of iPSC neuron-astrocyte coculture, hs_id=161968263471, hs_path=3d-bioprinting-of-ipsc-neuron-astrocyte-coculture, button_label=Read more, button_link=https://www.jove.com/t/65856/three-dimensional-bioprinting-human-ipsc-derived-neuron-astrocyte, type={label=Publication, value=Publication}, thumbnail={alt_text=, width=1700, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/ioGlutamatergic%20Neurons/bitbio-ioGlutamatergic-Neurons.jpg, height=1300}, year={label=2023, value=2023}, summary=<p>Whitehouse, et al<br><em>JoVE Journal of Visualized Experiments&nbsp;</em><br>2023</p> <p>Using <a href="https://www.bit.bio/products/nerve-cells/glutamatergic-neurons-wild-type-io1001" rel="noopener">ioGlutamatergic Neurons</a></p>, date_published=1695945600000, sort_date=1699228800000, tags=[{label=ioAstrocytes, value=ioAstrocytes}, {label=ioGABAergic Neurons, value=ioGABAergic Neurons}], media_contact=<p>Whitehouse et al.<br><em>JoVE Journal of Visualized Experiments&nbsp;</em><br>2023</p> <p>Using <a href="https://www.bit.bio/products/nerve-cells/glutamatergic-neurons-wild-type-io1001" rel="noopener">ioGlutamatergic Neurons</a></p>, listing_button_label=Read more}, {hs_name=ioGlutamatergic Neurons Wild Type and related disease models | User Manual, hs_id=161968263487, hs_path=glutamatergic-neurons, button_label=null, button_link=null, type={label=User manual, value=User manual}, thumbnail={alt_text=bit-bio ioGlutamatergic Neurons Day 14 Beta III Tubulin staining copy, width=1200, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/ioGlutamatergic%20Neurons%20in%20Drug%20Discovery/bit-bio%20ioGlutamatergic%20Neurons%20Day%2014%20Beta%20III%20Tubulin%20staining%20copy.jpeg, height=1200}, year={label=2024, value=2024}, summary=<p>V11</p> <p>bit.bio</p> <p>2024</p>, date_published=1707955200000, sort_date=1713225600000, tags=[{label=ioGlutamatergic Neurons, value=ioGlutamatergic Neurons}, {label=ioGlutamatergic Neurons HTT 50CAG/WT, value=ioGlutamatergic Neurons HTT 50CAG/WT}, {label=ioGlutamatergic Neurons TDP-43 M337V Het, value=ioGlutamatergic Neurons TDP-43 M337V Het}, {label=ioGlutamatergic Neurons TDP-43 M337V Hom, value=ioGlutamatergic Neurons TDP-43 M337V Hom}, {label=ioGlutamatergic Neurons MAPT P301S/WT, value=ioGlutamatergic Neurons MAPT P301S/WT}, {label=ioGlutamatergic Neurons MAPT P301S/P301S, value=ioGlutamatergic Neurons MAPT P301S/P301S}, {label=ioGlutamatergic Neurons MAPT N279K/WT, value=ioGlutamatergic Neurons MAPT N279K/WT}, {label=ioAstrocytes, value=ioAstrocytes}, {label=Product information, value=Product information}], media_contact=<p><span>V11</span></p> <p><span>bit.bio</span></p> <p><span>2024</span></p>, listing_button_label=Download}, {hs_name=ioGABAergic Neurons and related disease models | User Manual , hs_id=161968263491, hs_path=gabaergic-neurons, button_label=null, button_link=null, type={label=User manual, value=User manual}, thumbnail={alt_text=, width=1800, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/IoGABAergic%20Neurons/ioGABAergic%20Neurons%20New%20website%202022/Hero-image-GABA-updated-2023.png, height=1800}, year={label=2023, value=2023}, summary=<p><span>V6</span></p> <p><span>bit.bio</span></p> <p><span>2023</span></p>, date_published=1709596800000, sort_date=1688601600000, tags=[{label=ioGABAergic Neurons, value=ioGABAergic Neurons}, {label=ioAstrocytes, value=ioAstrocytes}, {label=Product information, value=Product information}], media_contact=<p>V6</p> <p>bit.bio</p> <p>2023</p>, listing_button_label=Download}, {hs_name=ioAstrocytes | User Manual, hs_id=170732259401, hs_path=astrocytes, button_label=null, button_link=null, type={label=User manual, value=User manual}, thumbnail={alt_text=ioAstrocyte - Hero image 20x, width=3954, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/ioAstrocytes/ioAstrocyte%20-%20Hero%20image%2020x.png, height=3954}, year={label=2024, value=2024}, summary=<p>V6</p> <p>2024</p> <p>bit.bio</p>, date_published=1718841600000, sort_date=1719273600000, tags=[{label=ioAstrocytes, value=ioAstrocytes}, {label=Product information, value=Product information}], media_contact=<p>V6</p> <p>bit.bio</p> <p>2024</p>, listing_button_label=Download}, {hs_name=Uncovering the Glioma Microenvironment With In Vitro Neuronal Models, hs_id=166831992936, hs_path=uncovering-the-glioma-microenvironment-with-in-vitro-neuronal-models, button_label=null, button_link=null, type={label=Webinar, value=Webinar}, thumbnail={alt_text=Hero image V4, width=1200, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/IoGABAergic%20Neurons/ioGABAergic%20Neurons%20New%20website%202022/Hero%20image%20V4.png, height=2000}, year={label=2024, value=2024}, summary=<p>Dr Brian Gill, MD | Assistant Professor of Neurological Surgery| Columbia University Irving Medical Center<br><br>Dr Tony Oosterveen | Principal Scientist and CNS Lead, Neurobiology | bit.bio</p> <p>&nbsp;</p>, date_published=1715212800000, sort_date=1715212800000, tags=[{label=ioGABAergic Neurons, value=ioGABAergic Neurons}, {label=ioAstrocytes, value=ioAstrocytes}], media_contact=null, listing_button_label=Watch now}, {hs_name=Exploring the critical roles of astrocytes in health and disease, hs_id=180505547033, hs_path=exploring-the-critical-roles-of-astrocytes-in-health-and-disease, button_label=null, button_link=null, type={label=Webinar, value=Webinar}, thumbnail={alt_text=ioAstrocyte - Hero image 20x, width=3954, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/ioAstrocytes/ioAstrocyte%20-%20Hero%20image%2020x.png, height=3954}, year={label=2024, value=2024}, summary=Jeremy Krohn | PhD candidate | German Center for Neurodegenerative Diseases (DZNE) Charité Medical Neuroscience Graduate Program<br><br>Tom Brown | Senior Product Manager | bit.bio, date_published=1728345600000, sort_date=1728345600000, tags=[{label=ioAstrocytes, value=ioAstrocytes}], media_contact=null, listing_button_label=Watch now}])
Exploring the critical roles of astrocytes in health and disease Webinar
Exploring the critical roles of astrocytes in health and disease
Jeremy Krohn | PhD candidate | German Center for Neurodegenerative Diseases (DZNE) Charité Medical Neuroscience Graduate Program

Tom Brown | Senior Product Manager | bit.bio
Watch now
Producing 3D Neuronal Microtissues for Preclinical Drug Screening using ioGlutamatergic Neurons Application note
Producing 3D Neuronal Microtissues for Preclinical Drug Screening using ioGlutamatergic Neurons
V1
2024
bit.bio
Inventia
Download
ioAstrocytes | User Manual User manual
ioAstrocytes | User Manual

V6

2024

bit.bio

Download
Uncovering the Glioma Microenvironment With In Vitro Neuronal Models Webinar
Uncovering the Glioma Microenvironment With In Vitro Neuronal Models

Dr Brian Gill, MD | Assistant Professor of Neurological Surgery| Columbia University Irving Medical Center

Dr Tony Oosterveen | Principal Scientist and CNS Lead, Neurobiology | bit.bio

 

Watch now
ioGlutamatergic Neurons Brochure
ioGlutamatergic Neurons

bit.bio

Download
ioGlutamatergic Neurons Wild Type and related disease models | User Manual User manual
ioGlutamatergic Neurons Wild Type and related disease models | User Manual

V11

bit.bio

2024

Download
3D bioprinting of iPSC neuron-astrocyte coculture Publication
3D bioprinting of iPSC neuron-astrocyte coculture

Whitehouse, et al
JoVE Journal of Visualized Experiments 
2023

Using ioGlutamatergic Neurons

Read more
ioGABAergic Neurons and related disease models | User Manual User manual
ioGABAergic Neurons and related disease models | User Manual

V6

bit.bio

2023

Download
Reprogramming the stem cell for a new generation of cures Publication
Reprogramming the stem cell for a new generation of cures

Davenport A, Frolov T & Kotter M

Drug Discovery World

2020

 

 

Read more

ioCells catalogue

Human iPSC-derived cells

powered by opti-ox

Consistent. Defined. Scalable.

bitbio-cell_catalogue_header-with-tracker-Desktop-2500x1664