bit.bio ICC staining of iPSC-derived ALS/FTD glutamatergic neurons disease model

cat no | ioEA1006

ioGlutamatergic Neurons
TDP‑43 M337V/WT

Human iPSC-derived ALS and FTD disease model

A rapidly maturing, consistent and scalable isogenic system to study amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

ioGlutamatergic Neurons TDP‑43 M337V/WT are opti‑ox deterministically programmed glutamatergic neurons carrying a genetically engineered heterozygous M337V mutation in the TARDBP gene, encoding TAR DNA binding protein 43 (TDP‑43). 

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

For academic discounts or bulk pricing inquiries, contact us

Benchtop benefits

bit.bio Compare ALS/FTD disease model cells with their wild-type genetically matched control

Make True Comparisons

Pair the ioDisease Model Cells with the genetically matched wild-type ioGlutamatergic Neurons to investigate the impact of mutant TDP‑43 protein on disease progression.

bit.bio opti-ox technology enables manufacturing at scale

Scalable

Industrial scale quantities are available with industry-leading seeding densities, and at a price point that allows the cells to be used from research to high throughput screening.

bit.bio iPSC-derived excitatory neurons are quick to mature and easy to use

Quick

The disease model cells and genetically matched control are experiment ready as early as 2 days post revival, and form structural neuronal networks at 11 days.

Technical data

Highly characterised and defined

ioGlutamatergic Neurons TDP‑43 M337V/WT express neuron-specific markers comparably to the wild type control

bit.bio Glutamatergic Neurons TDP-43 M337V het ICC staining of neuronal markers

Immunofluorescent staining on day 11 post-revival demonstrates similar homogenous expression of pan-neuronal proteins MAP2 and TUBB3 (upper panel) and glutamatergic neuron-specific transporter VGLUT2 (lower panel) in ioGlutamatergic Neurons TDP‑43 M337V/WT compared to the genetically matched control. 100X magnification.

ioGlutamatergic Neurons TDP‑43 M337V/WT form structural neuronal networks by day 11

bit.bio Glutamatergic neuronal morphology of ALS/FTD disease model cells

ioGlutamatergic Neurons TDP‑43 M337V/WT mature rapidly, show glutamatergic neuron morphology and form structural neuronal networks over 11 days when compared to the genetically matched control. Day 1 to 11 post-thawing; 100X magnification.

ioGlutamatergic Neurons TDP‑43 M337V/WT demonstrate gene expression of neuronal-specific and glutamatergic-specific markers following deterministic programming

bit.bio Gene expression of glutamatergic markers by RT-qPCR in ALS/FTD disease model cells

Gene expression analysis demonstrates that ioGlutamatergic Neurons TDP‑43 M337V/WT and the wild-type, genetically matched control (WT) lack the expression of pluripotency makers (NANOG and OCT4), at day 11, while robustly expressing pan-neuronal (TUBB3 and SYP) and glutamatergic-specific (VGLUT1 and VGLUT2) markers, and the glutamate receptor GRIA4. Gene expression levels were assessed by RT-qPCR (data normalised to HMBS; cDNA samples of the parental human iPSC line (hiPSC Control) were included as reference). Data represents day 11 post-revival samples, n=2 replicates.

Disease-related TARDBP is expressed in ioGlutamatergic Neurons TDP‑43 M337V/WT following deterministic programming

bit.bio TARDBP (TDP-43) gene expression in iPSC-derived glutamatergic neuron ALS/FTD disease model

Gene expression analysis demonstrates that ioGlutamatergic Neurons TDP‑43 M337V/WT and the wild-type, genetically matched control (WT) express the TARDBP gene encoding TDP‑43. Gene expression levels were assessed by RT-qPCR (data normalised to HMBS; cDNA samples of the parental human iPSC line (hiPSC Control) were included as reference). Data represents day 11 post-revival samples, n=2 replicates.

Disease-related phenotype

Differences in neuronal activity between disease models and control cells by MEA analysis indicates the potential of the panel as a relevant translational in vitro drug discovery model for ALS and FTD

bit.bio Glutamatergic Neurons TDP-43 M337V phenotype of reduced neuronal activity shown using MEA (Axion)

Reduced neuronal activity was measured in ioGlutamatergic Neurons TDP-43 M337V/M337V compared to ioGlutamatergic Neurons TDP-43 M337V/WT and the genetically matched control, ioGlutamatergic Neurons.

Microelectrode array (MEA) chips were spotted with 100K (~900K cells/cm2) ioGlutamatergic Neurons (WT), TDP-43 M337V/WT, or TDP-43 M337V/M337V, along with 20K (~180K cells/cm2) human iPSC-derived astrocytes.

Brightfield at 26 DIV (A, left),  cells show good coverage of electrodes and produce clear burst and network burst activity as seen in the raster plot of activity (A, right). In the raster plot, each dash indicates a firing event, blue indicates a single electrode burst and the pink box indicates a network burst event.

Quantification of raster plots over the course of culture shows that ioGlutamatergic Neurons TDP-43 M337V/M337V have a lower weighted mean firing rate, and network burst frequency than WT and ioGlutamatergic Neurons TDP-43 M337V/WT (B). No clear difference is noted between WT and TDP-43 M337V/WT. Error bars indicate SEM, n=14 technical repeats.

Data courtesy of Charles River Laboratories.

Cells arrive ready to plate

bit.bio Culture timeline for ALS/FTD iPSC-derived glutamatergic neurons disease models

ioGlutamatergic Neurons TDP‑43 M337V/WT are delivered in a cryopreserved format and are programmed to mature rapidly upon revival in the recommended media. The protocol for the generation of these cells is a two-phase process: Phase 1, Stabilisation for 4 days; Phase 2, Maintenance, during which the neurons mature. Phases 1 and 2 after revival of cells are carried out by the customer.

Industry leading seeding density

Do more with every vial

bit.bio Glutamatergic Neurons and disease models have a low minimum seeding density

The recommended minimum seeding density is 30,000 cells/cm2, compared to up to 250,000 cells/cm2 for other similar products on the market. One small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plates. One large vial can plate a minimum of 3.6 x 24-well plates, 5.4 x 96-well plates, or 7.75 x 384-well plates. This means every vial goes further, enabling more experimental conditions and more repeats, resulting in more confidence in the data.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male, age 55-60 years old (skin fibroblast)

Vial size

Small: >1 x 10 viable cells
Large: >5 x 10 viable cells

Quality control

Sterility, protein expression (ICC), gene expression (RT-qPCR) and genotype validation (Sanger sequencing)

Product use

These cells are for research use only

Differentiation method

opti-ox deterministic cell programming

Recommended seeding density

30,000 cells/cm2

User storage

LN2 or -150°C

Format

Cryopreserved cells

Applications

FTD and ALS research
Drug discovery and development
Disease modelling
High-throughput screening
Electrophysiological assays (MEA)
Co-culture studies

Genetic modification

Heterozygous M337V missense mutation in the TARDBP gene

Product resources

(LinkedValues: [{hs_name=Phenotypic characterisation of iPSC-derived ALS disease models by high-throughput MEA, hs_id=161727133272, hs_path=characterising-als-disease-models-with-mea, button_label=null, button_link=null, type={value=Application note, label=Application note}, thumbnail={alt_text=, width=1200, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/TDP43/TDP-43%20M337VWT%20ICC%20Overlay%20catalog%20hero.png, height=600}, year={value=2024, label=2024}, summary=<p>V1</p> <p>2023</p> <p>bit.bio | Axion BioSystems | Charles River Laboratories</p>, date_published=1710892800000, sort_date=1706832000000, tags=[{value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}], media_contact=<p>V1</p> <p>2023</p> <p>bit.bio | Axion BioSystems | Charles River Laboratories</p>, listing_button_label=Download}, {hs_name=Genotype and phenotype validation of an isogenic human iPSC-derived neuronal model of Huntington’s Disease, hs_id=161961134490, hs_path=huntingtons-htt50cag-phenotype-poster-mar23, button_label=View poster, button_link=https://drive.google.com/file/d/1BxJNslvtuCrc2G10C0SqwbfYx3h7THNk/view, type={value=Poster, label=Poster}, thumbnail={alt_text=, width=600, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/ioGlutamatergic%20Neurons%20HTT%2050CAGWT/a-HTT50CAGWT_Overlay__TUBB3(G)_MAP2(R)_DAPI(B)_%20(1).png, height=378}, year={value=2022, label=2022}, summary=<p>Oosterveen, et al</p> <p>bit.bio</p> <p>2022</p>, date_published=1708819200000, sort_date=1679443200000, tags=[{value=ioSkeletal Myocytes, label=ioSkeletal Myocytes}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}, {value=ioGlutamatergic Neurons MAPT P301S/WT, label=ioGlutamatergic Neurons MAPT P301S/WT}, {value=ioGlutamatergic Neurons MAPT P301S/P301S, label=ioGlutamatergic Neurons MAPT P301S/P301S}, {value=ioGlutamatergic Neurons MAPT N279K/WT, label=ioGlutamatergic Neurons MAPT N279K/WT}], media_contact=null, listing_button_label=View}, {hs_name=Modelling neurodegeneration: Human isogenic system to study FTD & ALS, hs_id=161961134492, hs_path=ftd-als-mapt-tdp-43-disease-models-adpd-2023-poster-mar23, button_label=View poster, button_link=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Resources/bitbio_ioGlutamatergic%20Neurons%20MAPT%20TDP-43%20Disease%20Model%20poster_v2.pdf, type={value=Poster, label=Poster}, thumbnail={alt_text=, width=1966, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Product%20pages/MAPT%20N279K/N279K%20MAP2%20brightfield%20compressed%20rotated.png, height=1966}, year={value=2023, label=2023}, summary=<p>Oosterveen, et al</p> <p>bit.bio &amp; Charles River Laboratories</p> <p>2023</p>, date_published=1709424000000, sort_date=1687478400000, tags=[{value=ioGlutamatergic Neurons, label=ioGlutamatergic Neurons}, {value=ioGlutamatergic Neurons HTT 50CAG/WT, label=ioGlutamatergic Neurons HTT 50CAG/WT}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}, {value=ioGlutamatergic Neurons MAPT P301S/WT, label=ioGlutamatergic Neurons MAPT P301S/WT}, {value=ioGlutamatergic Neurons MAPT P301S/P301S, label=ioGlutamatergic Neurons MAPT P301S/P301S}, {value=ioGlutamatergic Neurons MAPT N279K/WT, label=ioGlutamatergic Neurons MAPT N279K/WT}], media_contact=null, listing_button_label=View}, {hs_name=Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models, hs_id=161968263479, hs_path=precision-cellular-reprogramming-for-scalable-and-consistent-human-neurodegenerative-disease-models, button_label=Explore ioDisease Model Cells, button_link=https://www.bit.bio/iodisease-models, type={value=Talk, label=Talk}, thumbnail={alt_text=, width=1860, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/Website%20content/Resources/Tech%20Nets%20online%20symposium%20header%20(1).png, height=1260}, year={value=2023, label=2023}, summary=<p>Madeleine Garrett | Field Application Specialist | bit.bio</p>, date_published=1709078400000, sort_date=1681344000000, tags=[{value=ioGlutamatergic Neurons, label=ioGlutamatergic Neurons}, {value=ioGlutamatergic Neurons HTT 50CAG/WT, label=ioGlutamatergic Neurons HTT 50CAG/WT}, {value=ioMicroglia, label=ioMicroglia}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}, {value=ioGlutamatergic Neurons MAPT P301S/WT, label=ioGlutamatergic Neurons MAPT P301S/WT}, {value=ioGlutamatergic Neurons MAPT P301S/P301S, label=ioGlutamatergic Neurons MAPT P301S/P301S}, {value=ioGlutamatergic Neurons MAPT N279K/WT, label=ioGlutamatergic Neurons MAPT N279K/WT}, {value=ioOligodendrocyte-like cells, label=ioOligodendrocyte-like cells}, {value=ioMotor Neurons, label=ioMotor Neurons}], media_contact=null, listing_button_label=Watch now}, {hs_name=Partnering with Charles River to advance CNS drug discovery with ioGlutamatergic Neurons, hs_id=161968263497, hs_path=in-conversation-with-charles-river-video-part-2, button_label=null, button_link=null, type={value=Video, label=Video}, thumbnail={alt_text=, width=687, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/CRL%20video%20posts/crl%202%20webpage%20image-2.png, height=476}, year={value=2021, label=2021}, summary=<p>Dr Marijn Vlaming | Head of Biology, et al.</p> <p>Charles River &amp; bit.bio</p>, date_published=1705017600000, sort_date=1637107200000, tags=[{value=ioGlutamatergic Neurons, label=ioGlutamatergic Neurons}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}], media_contact=null, listing_button_label=Watch }, {hs_name=Culturing Glutamatergic Neurons | How-to Video, hs_id=161966111374, hs_path=how-to-culture-ioglutamatergic-neurons, button_label=Download the user manual, button_link=/resources/ioglutamatergic-neurons-user-manual, type={value=Video tutorial, label=Video tutorial}, thumbnail={alt_text=, width=1318, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/BitBio2022/Resources%20listing/hubdb-thumbs/resources/How%20to%20prepare%20tissue%20culture%20vessels%20with%20PDL-Geltrex-min.png, height=1000}, year={value=2021, label=2021}, summary=<p>Dr Kaiser Karim <span>|</span> Scientist<br>bit.bio</p>, date_published=1705104000000, sort_date=1637020800000, tags=[{value=ioGlutamatergic Neurons, label=ioGlutamatergic Neurons}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}], media_contact=null, listing_button_label=Watch now}, {hs_name=Preparing Culture Vessels for Glutamatergic Neurons | How-to Video, hs_id=161966111375, hs_path=how-to-prepare-tissue-culture-vessels-with-pdl-geltrex, button_label=Watch the next video, button_link=/resources/how-to-culture-ioglutamatergic-neurons, type={value=Video tutorial, label=Video tutorial}, thumbnail={alt_text=, width=1318, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/BitBio2022/Resources%20listing/hubdb-thumbs/resources/How%20to%20culture%20ioGlutamatergic%20Neurons-min.png, height=1000}, year={value=2021, label=2021}, summary=<p>Dr Kaiser Karim <span>|</span> Scientist<br>bit.bio</p>, date_published=1705190400000, sort_date=1636934400000, tags=[{value=ioGlutamatergic Neurons, label=ioGlutamatergic Neurons}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}], media_contact=null, listing_button_label=Watch now}, {hs_name=Modelling human neurodegenerative diseases in research & drug discovery, hs_id=161968263520, hs_path=modelling-human-neurodegenerative-diseases-in-research-drug-discovery, button_label=Explore ioDisease Model Cells, button_link=https://www.bit.bio/iodisease-models, type={value=Webinar, label=Webinar}, thumbnail={alt_text=, width=1200, url=https://14527135.fs1.hubspotusercontent-na1.net/hubfs/14527135/BitBio2022/product-page/Colour%20webinar%20with%20it-bio%20ioGlutamatergic%20Neurons_VGLUT2(G)_MAP2(R)_Tubb3(B)_Hoechst(B)_20x_merge-comp.jpg, height=717}, year={value=2022, label=2022}, summary=<p><span>Dr Mariangela Iovino | Group Leader | Charles River</span></p> <p><span>Dr Tony Oosterveen | Senior Scientist | bit.bio</span></p>, date_published=1707523200000, sort_date=1649116800000, tags=[{value=ioGABAergic Neurons, label=ioGABAergic Neurons}, {value=Product information, label=Product information}, {value=ioGlutamatergic Neurons HTT 50CAG/WT, label=ioGlutamatergic Neurons HTT 50CAG/WT}, {value=ioMicroglia, label=ioMicroglia}, {value=ioGlutamatergic Neurons TDP-43 M337V Het, label=ioGlutamatergic Neurons TDP-43 M337V Het}, {value=ioGlutamatergic Neurons TDP-43 M337V Hom, label=ioGlutamatergic Neurons TDP-43 M337V Hom}, {value=ioSensory Neurons, label=ioSensory Neurons}], media_contact=<p>&nbsp;</p> <p>&nbsp;</p>, listing_button_label=Watch now}])
Phenotypic characterisation of iPSC-derived ALS disease models by high-throughput MEA Application note
Phenotypic characterisation of iPSC-derived ALS disease models by high-throughput MEA

V1

2023

bit.bio | Axion BioSystems | Charles River Laboratories

Download
Modelling neurodegeneration: Human isogenic system to study FTD & ALS Poster
Modelling neurodegeneration: Human isogenic system to study FTD & ALS

Oosterveen, et al

bit.bio & Charles River Laboratories

2023

View
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models Talk
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models

Madeleine Garrett | Field Application Specialist | bit.bio

Watch now
Genotype and phenotype validation of an isogenic human iPSC-derived neuronal model of Huntington’s Disease Poster
Genotype and phenotype validation of an isogenic human iPSC-derived neuronal model of Huntington’s Disease

Oosterveen, et al

bit.bio

2022

View
Modelling human neurodegenerative diseases in research & drug discovery Webinar
Modelling human neurodegenerative diseases in research & drug discovery

Dr Mariangela Iovino | Group Leader | Charles River

Dr Tony Oosterveen | Senior Scientist | bit.bio

Watch now

Cell culture hacks | human iPSC-derived glutamatergic neurons 

Read this blog on glutamatergic neuron cell culture for our top tips on careful handling, cell plating and media changes to achieve success from the outset.

bit.bio_3x2_ioGlutamatergic Neurons_MAP2_Hoescht_x20_hi.res (1)

Related products

ioGlutamatergic Neurons TDP-43 M337V/M337V ioDisease Model Cells
ioGlutamatergic Neurons TDP-43 M337V/M337V cat no | ioEA1005
Order now
ioMotor Neurons TDP-43 M337V/WT ioDisease Model Cells
ioMotor Neurons TDP-43 M337V/WT cat no | io1050
Order now
ioMotor Neurons TDP-43 M337V/M337V ioDisease Model Cells
ioMotor Neurons TDP-43 M337V/M337V cat no | io1046
Order now
ioGlutamatergic Neurons ioWild Type Cells
ioGlutamatergic Neurons cat no | io1001
Order now
CRISPR-Ready ioGlutamatergic Neurons CRISPR-Ready ioCells
CRISPR-Ready ioGlutamatergic Neurons cat no | io1090
Order now
ioGlutamatergic Neurons MAPT N279K/WT ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/WT cat no | io1009
Order now
ioGlutamatergic Neurons MAPT P301S/WT ioDisease Model Cells
ioGlutamatergic Neurons MAPT P301S/WT cat no | io1015
Order now
ioGlutamatergic Neurons MAPT N279K/N279K ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/N279K cat no | io1014
Order now
ioGlutamatergic Neurons MAPT P301S/P301S ioDisease Model Cells
ioGlutamatergic Neurons MAPT P301S/P301S cat no | io1008
Order now

Wild type and isogenic disease model cells: a true comparison.

Further your disease research by pairing our wild type Cells with isogenic disease models.

bitbio-vials-Wild_and_Disease-staggered-2500px_wide

Related pages

Our platform Discover the cell coding platform behind our cells
Product catalogue See the range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos